Dual multiwavelet frames with symmetry from two-direction renable functions
نویسندگان
چکیده مقاله:
این مقاله چکیده ندارد
منابع مشابه
Dual Multiwavelet Frames with Symmetry from Two-direction Refinable Functions
Motivated by [B. Han and Q. Mo, Adv. Comp. Math. 18 (2003) 211-245] and [B. Han and Z. Shen, Constr. Approx. 29 (2009) 369-406], we propose dual two-direction frames in dual Sobolev spaces (H(R), H−s(R)), with s > 0. Based on the dual two-direction frames from a pair of two-direction refinable functions, dual multiwavelet frames with symmetry {Ψ(x) := (ψ 1(x), ψ 2(x)) T }`=1 and {Ψ̃(x) : = (ψ̃ 1(...
متن کاملPairs of Dual Wavelet Frames from Any Two Refinable Functions
Starting from any two compactly supported refinable functions in L2(R) with dilation factor d, we show that it is always possible to construct 2d wavelet functions with compact support such that they generate a pair of dual d-wavelet frames in L2(R). Moreover, the number of vanishing moments of each of these wavelet frames is equal to the approximation order of the dual MRA; this is the highest...
متن کاملMultiwavelet Frames from Refinable Function Vectors
Starting from any two compactly supported d-refinable function vectors in ( L2(R) )r with multiplicity r and dilation factor d, we show that it is always possible to construct 2rd wavelet functions with compact support such that they generate a pair of dual d-wavelet frames in L2(R) and they achieve the best possible orders of vanishing moments. When all the components of the two real-valued d-...
متن کاملExtension Principles for Dual Multiwavelet Frames of L2(r) Constructed from Multirefinable Generators
In this work we prove that any pair of homogeneous dual multiwavelet frames of L2(R) constructed from a pair of refinable function vectors gives rise to a pair of nonhomogeneous dual multiwavelet frames and vice versa. We also prove that the Mixed Oblique Extension Principle characterizes dual multiwavelet frames. Our results extend recent characterizations of affine dual frames derived from sc...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 37 شماره No. 1
صفحات 199- 214
تاریخ انتشار 2011-06-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023